
 the Technical Broadcast Page 1

Inside...

But All I did was Compress the Loadlib . . . 5-6

NATURAL WORKFILES 7

Year 2000 Update 8-10

Published by the Department of Information Services Summer 1996

his is the fifth in a series of eight
articles discussing features of the
COBOL/370 programming language.

As mentioned in the first article of this series,
COBOL/370 does not have its own unique
runtime environment, but shares one with
PL/1 and C. This shared runtime environment
is known as Language Environment/370
(LE/370).

This article discusses DYNAMIC STORAGE
MANAGEMENT, one of COBOL/370’s
capabilities under LE/370.

Because of its 31-bit addressing capabilities,
COBOL/370 can address quite a bit of
storage. This has resulted in the creation of
some gargantuan (don’t you love that word?)
working storage tables by programmers
looking to gain efficiency by processing ‘in
memory’. If these tables always have the same
number of entries, then ‘so be it’ . . . they’re
cool. Unfortunately, in some processes, the

COBOL/370 and LE/370, Article Five
by Gary Duffield

number of entries varies from run to run, and
we end up with humongous (another good
one) programs that sometimes don’t really
need all the space they occupy.

“Ah,” you say, “that’s why I use the
OCCURS DEPENDING ON clause in my
tables.” Yes . . . but, you see, the program
still sets aside enough storage to satisfy the
TO value you specify on that clause. So even
though you may not be using it, the storage
is still there.

LE/370 provides CALLABLE SERVICES
to programs running under its control. One
of these services allows the COBOL/370
programmer to handle these big (okay, so
I’m already out of good adjectives) tables
much more intelligently.

The strategy is this: instead of defining a
table in working storage (and setting aside all
that space), let’s move the definition to the

(Continued on page 2)

 the Technical Broadcast Page 2

COBOL/370 and LE/370, Article Five

(Continued from page 1)

All services belonging to LE/370 have names beginning with “CEE.” The rest of the name is a
sort of mnemonic -- GTST = GeT STorage.

LINKAGE SECTION.
01 EMPLOYEE-TABLE.

05 NUMBER-OF-EMPLOYEES PIC S9(4) BINARY.
05 EMPLOYEE-RECORD OCCURS 1 TO 10000 TIMES

DEPENDING ON NUMBER-OF-EMPLOYEES.
10 NAME PIC X(20).
10 ID-NO PIC 9(9).
10 SALARY PIC 9(7)V99.

linkage area where it will have no storage associated with it. That puts our program on a crash
weight loss plan immediately.

Let’s take the table used as an example in the last article and move it to the linkage section:

Now, because it is in the linkage section, it does not yet define real memory. So we need to
invoke LE/370’s callable services to get some. But first, we have to figure out how much
storage we need. Let’s say we want to start out with enough for 5,000 employees:

COMPUTE STORAGE-NEEDED =
5000 * LENGTH OF EMPLOYEE-RECORD +
LENGTH OF NUMBER-OF-EMPLOYEES.

Of course, you could do this math at the time you are coding the program and just put the
hardcoded value (190002) into the STORAGE-NEEDED field. But imagine the number of
elements as a parameter passed to your program instead of a hardcoded 5000. Then the
COMPUTE statement above can produce a different answer specific to that run of the
program.

Anyway, now that we know how much storage we want, let’s go get it:

CALL ‘CEEGTST’ USING HEAP-ID, STORAGE-NEEDED,
 STORAGE-ADDRESS, FC.

(Continued on page 3)

 the Technical Broadcast Page 3

COBOL/370 and LE/370, Article Five

(Continued from page 2)

And there we have it. A table description that points to enough storage to hold information for
5,000 employees.

Oops! But later our program logic detects that we are about to add the five thousand and first
entry. We’ve used up all the storage! What do we do?

This is cool: LE/370 provides another callable service to resize an existing storage allocation.
Suppose we decide to get enough additional storage to hold another 2,500 entries. Since we’re
resizing, NOT adding on to, we must specify the new TOTAL size. So we would redo our
COMPUTE statement above, this time for 7,500 entries (the original 5,000 plus 2,500 more).

The HEAP-ID (fullword signed integer) should have a value of 0 (zero) to use the default
storage heap set up by LE/370 when program execution is begun. We also passed the amount
of storage needed (also a fullword signed integer).

We get back a value in storage-address, where the allocated storage can be. But how can we
tell if the service was successful? Use the FEEDBACK-CODE (FC) parameter to find this out.
A future article will discuss error handling under LE/370 and talk more about the FC. So for
now, a value of binary zeros in the 12 character FC is synonymous with success.

The STORAGE-ADDRESS field is a special critter called a POINTER. It is used to pass
address locations and is defined in your program like this:

05 STORAGE-ADDRESS USAGE IS POINTER.

SET ADDRESS OF EMPLOYEE-TABLE TO STORAGE-ADDRESS.

That’s it!

We now need to connect our description of the table in the linkage section to the actual
storage we just allocated. We do that with the COBOL/370 special register called ADDRESS
OF. All items defined in the linkage section have this special register connected to them. So:

(Continued on page 4)

 the Technical Broadcast Page 4

COBOL/370 and LE/370, Article Five

(Continued from page 3)

You guessed it. FRee the STorage when you’re done with it. Sure, it would be automatically
freed when your program terminates, but that would raise a condition to LE/370. That’s
something we probably don’t want to do. More on raising a condition in a future article.

More information about DYNAMIC STORAGE MANAGEMENT and other CALLABLE
SERVICES can be found in:
 IBM SAA AD/Cycle Language Environment/370 Programming Guide (SC26-4818)

The remaining articles of this series will be published in future issues of the DIS Technical
Broadcast.

If you have any questions about these articles, please contact Gary Duffield at 902-3031. If
you would like to obtain a copy of all eight, contact Charie Martin at 902-3112.

Perhaps the CZST stands for Change siZe of STorage? In any event, we pass the address of the
storage area to be resized. It is important to note that the service MAY ALSO RELOCATE
the storage in order to get enough contiguous memory to satisfy your request. So it is
necessary to reset our link:

Now that we have our new value for STORAGE-NEEDED, let’s resize it:

SET STORAGE-ADDRESS TO ADDRESS OF EMPLOYEE-TABLE.
CALL ‘CEECZST’ USING STORAGE-ADDRESS, STORAGE-NEEDED, FC.

SET STORAGE-ADDRESS TO ADDRESS OF EMPLOYEE-TABLE.
CALL ‘CEEFRST’ USING STORAGE-ADDRESS, FC.

So there you go—intelligent handling of storage needs from within a COBOL program!

One last thing. It is a good practice to use one last callable service in your termination logic:

SET ADDRESS OF EMPLOYEE-TABLE TO STORAGE-ADDRESS.

 the Technical Broadcast Page 5

But All I did was Compress the Loadlib...
by Carol Criscione

any years ago, nearly all Department
of Information Services’ (DIS)
Customer Information Control

System (CICS) customer “runtime” programs
(modules) were compiled or copied into two
B-I-G (HUMONGOUS) shared libraries--one
for test and one for production regions. That
made things convenient unless the libraries
contained corrupted modules or ran out of
space thereby impacting all regions using
them. The shared libraries grew larger--and
larger--and larger. Deleting modules was
not a popular option back then as there were
security-related issues. Also, customers were
requesting more control over their compile
procedures and libraries.

Ultimately, the decision was made to divide
the massive runtime libraries into smaller ones
which could be maintained and secured by
DIS customers. DIS would create and
maintain an online selection of CICS-related
compile procedures and define the customer
libraries to the appropriate CICS regions. The
individual agencies would create and maintain
their own agency libraries and customized
procedures.

The library maintenance staff made the
libraries larger when needed and compressed
them when the CICS region using them was
“down for the night.” The security staff
designated who would be allowed access to
their libraries via RACF security rules.

Of course, it is common knowledge that very
little in the data processing arena remains
constant long. Over time, many agencies

added a swing shift; some added a graveyard
shift. System development activities
increased dramatically. Time zones became a
factor in CICS availability hours with the
practice of telecommuting. Many CICS
regions became available 20 or more hours
per day and six or more days per week. It
seemed like everyone wanted the system at
the same time. The maintenance window
available for CICS-related libraries became
smaller--and smaller--and smaller. That
presented major challenges for maintenance
staff.

CICS-related library maintenance performed
when a CICS region is “up” (online) has a
high potential of adversely impacting the
region, which means a lot of people are
unhappy because they can’t do their work.
The maintenance function least desirable
when the region is up is the compression
function.

(Continued on page 6)

 the Technical Broadcast Page 6

But All I did was Compress the Loadlib...

(Continued from page 5)

In a nutshell (and using a lot of technical
license); when CICS comes up, it builds a
unique PPT table entry for each program
defined to CICS. That table entry contains
such information as the program name, the
language in which it is written, and where in
CICS it can execute. It also reserves a place
for the DASD or (hard drive/storage) address
of the module. The first time the module is
needed, CICS looks up the module name,
searches the libraries defined to CICS, finds
the DASD address of the module, saves the
address in the module PPT table entry for
future reference, loads the module residing at
that address into CICS “memory,” and starts
it.

Here is the problem: when a library is
compressed, many programs may be
physically moved to new locations with new
DASD addresses. Unfortunately, any CICS
transaction running at the time of the
compression will still be referencing the old
address of the module--now an invalid
address. It’s similar to moving and not leaving
a forwarding address with the U.S. Postal
Service.

How do programmers change a program used
at least once when the CICS is up? The
program is changed, compiled, placed into the
relevant library, and the CICS NEWCopy
transaction is used. NEWC replaces the
previous address of the module in the PPT
table entry with the new address of the
changed module. The next time a transaction
is started using the module, it references the

new DASD address of the changed module.
This event is like moving and leaving a
forwarding address. Pretty neat, huh?

Why not just compress the library and
NEWCopy all the modules executed at least
once? Hundreds of programs might need to
be “newcopied.” It’s unlikely anyone is fast
enough to successfully complete that task
without a problem! In the end, the affected
region might have to be brought down and
back up again to clear the problem. That
process of “recycling the region” is definitely
an undesirable action.

Fortunately, there have been very few
incidences of CICS problems caused by
someone compressing a runtime library when
a CICS region is online. The few times it has
occurred, a library compression batch job did
not run properly or a dynamic compression
command was used when the region was up.

“Good job!” to all you talented, hard-
working maintenance people who keep the
libraries neat, clean, and keep the rest of us
working as efficiently as possible. I
appreciate it!

 the Technical Broadcast Page 7

NATURAL WORKFILES
by Tom Thomas

ATURAL version 2.2.7 introduced a
new value for the NATURAL
WORKBLK profile parameter that

may be beneficial to NATURAL
programmers who write NATURAL
Workfiles. With the NATURAL profile
parameter WORKBLK, you can now have
the blocksize set automatically by specifying a
block size value of “0”. This causes the Data
Facility System Managed Storage (DFSMS)
to set the optimum blocksize automatically.
In the example below, SMS set the block size
to 27960 (which is half track blocking on
disk). If the dataset were going to tape, the
blocksize would have been 32K.

//TEST EXEC NAT,DBID=nnn,PARMS= 'WORKBLK=0,STACK=(LOGON *)'
//*
//CMWKF01 DD DISP=(NEW,CATLG,DELETE),DSN=TEST.FB40,
// UNIT=SYSDA,DCB=(RECFM=FB,LRECL=40, BLKSIZE=0),
// SPACE=(TRK,(1,1))

If you have any questions or wish to discuss this further, please call the DIS CICS/Database
Technical Services staff at 902-3045.

Currently, the vendor supplied default value
for WORKBLK on all databases is 4628.
We plan to make zero the default value for
WORKBLK in the near future.

In the interim, you can dynamically override
the default value. The following example
shows how to do the override. Make sure
that the BLKSIZE parameter on the DD
statement is set to zero. If you code a
BLKSIZE greater than zero, it overrides
the NATURAL profile parameter
WORKBLK=0 and that is what you get.

 the Technical Broadcast Page 8

Year 2000 Update
by Kathy Rosmond

he Year 2000 Project
Overview

The year 2000 poses a challenge to the whole
information technology industry at all levels
of computing from mainframes to work-
stations. In an effort to be efficient with data
entry and data storage, computer
programmers stored the year as two digits
(96) instead of four (1996). When the next
century arrives, computers will interpret the
date as 1900 and calculate inaccurate results
when performing comparisons on dates,
arithmetic operations, or sorting by date.
Major conversions must be done. Along with
the conversions, identifying links to other
computer programs and verifying that the
results are accurate will be an enormous task.
It is predicted by the Gartner Group that only
25 percent of critical state government
computer systems will be ready to handle it.

In an effort to meet the challenge, the
Department of Information Services (DIS)
assigned project managers, Stan Ditterline and
Kathy Rosmond, to facilitate statewide
efforts. The team takes a phased approach to
the plan. In Phase I, the project team will
assist agencies by providing the tools and
services needed to develop credible estimates
for planning and budgeting. In Phase II,
agencies will prepare detailed analyses and a
plan for conversions and testing. DIS will
provide technical tools, project management,
and support to convert and test critical agency
applications. Phase III will be the actual
conversions and testing. This must be

completed before the year 2000. There is no
way to turn back the clock!

A Year 2000 Special Interest Group (SIG)
has formed and meets the third Wednesday
of each month. The SIG works with DIS to
identify needed state government technical
resources and participates in evaluating
resulting statewide contracts. The SIG also
provides a forum for sharing information and
experiences. An executive steering
committee made up of deputy directors
provides high-level perspective and support
for the project.

With agencies planning now and working
together, Washington State computer
systems will be prepared for the next century.

DIS Year 2000 WWW Home Page
The Department of Information Services'
year 2000 team recently introduced its

(Continued on page 9)

 the Technical Broadcast Page 9

Year 2000 Update

(Continued from page 8)

project on the World Wide Web (WWW)
through the Washington State home page.
Though the site is newly constructed, there is
already valuable information about the year
2000 at your fingertips. The address of the
site for the Project 2000 Resource
Information Center is:
http://www.wa.gov/dis/2000/y2000.htm.

Contents include:

• year 2000 Calendar of Events
• general information for the technical and

nontechnical
• year 2000 list serve excerpts
• links to other sites of interest
• acquisitions and contracts supporting

government year 2000 projects
• year 2000 hardware and software

compliance surveys

The site has links to other sites like Peter de
Jager's Year 2000 Information Center.
Information specific to Washington State
year 2000 efforts can be found under the year
2000 Calendar of Events. Selected excerpts
from Peter de Jager's year 2000 list serve will
be stored for a three month period. Other
states' and corporations' year 2000
experiences may be available by visiting
"Links to Other Sites of Interest."

The content of the WWW page will grow as
agencies and companies continue their
planning, conversions, and testing for the
year 2000, producing a valuable, easy to use,

and timely resource for people involved in
this project.

If you have suggestions for the DIS Year
2000 Information Resource Center home
page, please contact Judy Politz at (360)
902-3046 or email at judyp@dis.wa.gov.

Year 2000 Analysis and Planning
Guideline
The Department of Information Services
and the Year 2000 Special Interest Group
worked to develop the Year 2000 Planning
and Analysis Guideline to assist agencies
developing high-level time, cost, and
resource estimates for planning and
budgeting for year 2000 conversion efforts.
Since many projects require a coordinated
effort between state agencies, it is essential
to gather consistent data. The guideline
contains a matrix to determine conversion
risks and business impact on essential state
services.

A copy of the guideline is available at the
DIS Year 2000 Information Resource Center
home page at http://www.wa.gov/dis/2000/
3_info.htm or by contacting Kathy Rosmond
at (360) 902-3445 or email at
kathyr@dis.wa.gov.

WA Year 2000 Special Interest Group
(SIG) Meetings; third Wednesday of the
month; Contact: Stan Ditterline, DIS, (360)
902-3574 or email at stand@dis.wa.gov.

(Continued on page 10)

 the Technical Broadcast Page 10

Year 2000 Update

(Continued from page 9)

ADABAS Natural Agreement
Negotiated
The Department of Information Services
negotiated a limited use master agreement
for year 2000 date analysis for Software AG
ADABAS Natural language programs. The
apparent successful contractor is Data
Dimensions Inc., 777 108 Avenue NE, Suite
2070, Bellevue, WA 98004.

The agreement allows agencies to buy
services under this contract by executing a

statement of work directly with Data
Dimensions.

For information on this agreement, contact
Becci Riley at (360) 902-3509 or visit the
DIS Year 2000 Project Information
Resource Center at http://www.wa.gov/dis/
2000/y2000.htm.

For More Info
Please contact Kathy Rosmond at (360)
902-3445 or email at kathyr@dis.wa.gov for
further information on the year 2000.

 the Technical Broadcast Page 11

Technical Broadcast Staff - The Technical Broadcast is
published quarterly by the Department of Information
Services (DIS). The purpose is to provide a forum for
customer information-sharing of upcoming system
enhancements and optimization tips. We invite your articles,
comments, and suggestions.

DIS is an equal opportunity employer and does not
discriminate on the basis of race, religion, color, sex, age,
nationality, or disability.

Charie L. Martin, Editor
Department of Information Services
Adams Building
1310 Jefferson ST SE
Mail Stop: 42445
Olympia, WA 98504-2445

the Technical
 Broadcast

